如图,四边形为矩形,平面,,平面于点,且点在上.(1)求证:;(2)求四棱锥的体积;
已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离
已知矩阵,A的一个特征值,属于λ的特征向量是,求矩阵A与其逆矩阵.
(理)如图,P—ABCD是正四棱锥,是正方体,其中(1)求证:;(2)求平面PAD与平面所成的锐二面角的余弦值;
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。(I)求棱PB的长;(II)求二面角P—AB—C的大小。
已知函数. 求(1) 的定义域;(2)判断在其定义域上的奇偶性,并予以证明,(3)求的解集。