当时,试用代数和几何两种方法探究和的大小关系。
先化简,再求值:,其中.
解不等式组:
已知抛物线经过点、,与轴交于点.
(1)求这条抛物线的解析式;
(2)如图1,点是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;
(3)如图2,线段的垂直平分线交轴于点,垂足为,为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
如图1,在中,,,,点、分别是边、的中点,连接.将绕点逆时针方向旋转,记旋转角为.
(1)问题发现
①当时, ;
②当时, .
(2)拓展探究
试判断:当时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
绕点逆时针旋转至、、三点在同一条直线上时,求线段的长.
为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?