如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)当t=2时,求△BPQ的面积; (2)若四边形ABQP为平行四边形,求运动时间t.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
(宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A. (1)求证:直线BC是⊙O的切线; (2)若AE=2,tan∠DEO=,求AO的长.
(宜宾)如图,抛物线与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P. (1)求抛物线的解析式; (2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H. ①当四边形OMHN为矩形时,求点H的坐标; ②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.
(遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N. (1)求证:∠ADC=∠ABD; (2)求证:AD2=AM•AB; (3)若AM=,sin∠ABD=,求线段BN的长.
(遂宁)如图,已知抛物线经过A(﹣2,0),B(4,0),C(0,3)三点. (1)求该抛物线的解析式; (2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由; (3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式.
(自贡)如图,已知抛物线()的对称轴为直线,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B. (1)若直线经过B、C两点,求直线BC和抛物线的解析式; (2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标; (3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.