如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)当t=2时,求△BPQ的面积; (2)若四边形ABQP为平行四边形,求运动时间t.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数统计表
借阅图书的次数
0次
1次
2次
3次
4次及以上
人数
7
13
a
10
3
请你根据统计图表中的信息,解答下列问题:
(1) a = , b = .
(2)该调查统计数据的中位数是 ,众数是 .
(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;
(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.
如图,在 Rt Δ ABC 中.
(1)利用尺规作图,在 BC 边上求作一点 P ,使得点 P 到 AB 的距离 ( PD 的长)等于 PC 的长;
(2)利用尺规作图,作出(1)中的线段 PD .
(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
如图,已知二次函数 y = a x 2 + 2 x + c 的图象经过点 C ( 0 , 3 ) ,与 x 轴分别交于点 A ,点 B ( 3 , 0 ) .点 P 是直线 BC 上方的抛物线上一动点.
(1)求二次函数 y = a x 2 + 2 x + c 的表达式;
(2)连接 PO , PC ,并把 ΔPOC 沿 y 轴翻折,得到四边形 POP ' C .若四边形 POP ' C 为菱形,请求出此时点 P 的坐标;
(3)当点 P 运动到什么位置时,四边形 ACPB 的面积最大?求出此时 P 点的坐标和四边形 ACPB 的最大面积.
如图,点 O 是 ΔABC 的边 AB 上一点,以 OB 为半径的 ⊙ O 与边 AC 相切于点 E ,与边 BC , AB 分别相交于点 D , F ,且 DE = EF .
(1)求证: ∠ C = 90 ° ;
(2)当 BC = 3 , sin A = 3 5 时,求 AF 的长.
已知矩形 ABCD 中, E 是 AD 边上的一个动点,点 F , G , H 分别是 BC , BE , CE 的中点.
(1)求证: ΔBGF ≅ ΔFHC ;
(2)设 AD = a ,当四边形 EGFH 是正方形时,求矩形 ABCD 的面积.