如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点。若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积。
在平面直角坐标系xOy中,已知动点P在正比例函数y = x的图象上,点P的横坐标为m (m > 0).以点P为圆心,m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方).点E为平行四边形DOPE的顶点(如图). (1)直接写出点B、E的坐标(用含m的代数式表示); (2)连接DB、BE,设△BDE的外接圆交y轴于点Q (点Q异于点D),连接EQ、BQ.试问线段BQ与线段EQ的长是否相等?为什么? (3)连接BC,求∠DBC −∠DBE的度数.
已知:关于x的方程(a −1)x2− (a + 1)x + 2 = 0. (1)当a取何值时,方程(a −1)x2− (a + 1)x + 2 = 0有两个不相等的实数根; (2)当整数a取何值时,方程(a −1)x2− (a + 1)x + 2 = 0的根都是正整数.
如图,已知AB是⊙O的弦,OB = 2,∠B = 30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD. (1)弦长AB = ____________(结果保留根号); (2)当∠D = 20°时,求∠BOD的度数; (3)当AC的长度为多少时,以点A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA =∠C. (1)求证:PB是⊙O的切线; (2)连接OP,若OP // BC,且OP = 8,⊙O的半径为,求BC的长.