如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数(>)图象上, OB=(OC>OA).(1)求点B的坐标; (2)若动点E从A开始沿AB向B以每秒2个单位的速度运动,同时动点F 从B开始沿BC向C以每秒1个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.当运动时间为秒时,在x轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,四边形 ABCD 中, AD / / BC , ∠ BAD = 90 ° , CB = CD ,连接 BD ,以点 B 为圆心, BA 长为半径作 ⊙ B ,交 BD 于点 E .
(1)试判断 CD 与 ⊙ B 的位置关系,并说明理由;
(2)若 AB = 2 3 , ∠ BCD = 60 ° ,求图中阴影部分的面积.
如图,在 ΔABC 中, ∠ BAC 的角平分线交 BC 于点 D , DE / / AB , DF / / AC .
(1)试判断四边形 AFDE 的形状,并说明理由;
(2)若 ∠ BAC = 90 ° ,且 AD = 2 2 ,求四边形 AFDE 的面积.
为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了 20 % ,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是 ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
为推进扬州市"青少年茁壮成长工程",某校开展"每日健身操"活动,为了解学生对"每日健身操"活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度
人数
A .非常喜欢
50人
B .比较喜欢
m 人
C .无所谓
n 人
D .不喜欢
16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ;
(2)扇形统计图中表示 A 程度的扇形圆心角为 ° ,统计表中 m = ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢"每日健身操"活动(包含非常喜欢和比较喜欢).