如图,已知抛物线与轴交于A (-4,0) 和B(1,0)两点,与轴交于C点.(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EF//AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;(3)若P为抛物线上A、C两点间的一个动点,过P作轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.
如图,小明在大楼30米高 (即PH=30米)的窗口P处进行观测,测得山 坡上A处的俯角为15°,山脚B处的俯角为 60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点 H、B、C在同一条直线上,且PH⊥HC. (1)山坡坡角(即∠ABC)的度数等于▲度; (2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).
如图所示的方格地面上,标有编号1、2、3的3 个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地 面完全相同. (1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求 小鸟落在草坪上的概率; (2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪, 则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E. (1)求证:△ABD≌△ECB; (2)若∠DBC=50°,求∠DCE的度数.
先化简,再求值:,其中.
解不等式:.