如图,在半径为2的扇形AOB中,∠AOB=60°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域。
如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC绕点C顺时针旋转得到△A1B1C1;(2)作△ABC关于点O成中心对称的△A2B2C2.
(1)计算:(2)先化简,再求值,其中.
问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。问题探究:(1)在旋转过程中,①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。图1 图2 图3
已知抛物线与x轴交于点、C,与y轴交于点B(0,3),抛物线的顶点为p。(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(-5,6)。①求k的值及平移后抛物线所对应函数的最小值;②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点。请探究:当点M在何处时,△MBD的而积是△MPQ面积的2倍?求出此时点M的坐标。
如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD。(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。