如图,对称轴为的抛物线与轴相交于点、。(1)求抛物线的解析式,并求出顶点的坐标(2)连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0<S≤18时,求的取值范围(3)在(2)的条件下,当取最大值时,抛物线上是否存在点,使△OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.
如图,在△ADF与△CBE中,点A 、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.
在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.
分解因式:4x2y-4xy2+y3.
若5x-3y-2=0,则105x÷103y=。
如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,-3).(1)求k的值及点A、B的坐标;(2)设抛物线的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.