如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE = EC(1)求证:平面(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
已知都是非零实数,且,求证:的充要条件是.
在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过点的直线交椭圆于两点,且的周长为16,求椭圆的标准方程.
如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (1)求椭圆M的标准方程; (2)设直线与椭圆有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时的值.
已知一条曲线C在y轴右边,C上任一点到点F(2,0)的距离减去它到y轴的距离的差都是2 (1)求曲线C的方程; (2)一直线l与曲线C交于A,B两点,且|AF|+|BF|=8,证:AB的垂直平分线恒过定点.
如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2, (1)求证:AC⊥BD; (2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.