(2014年辽宁大连12分)如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′. (1)该抛物线的解析式为 (用含m的式子表示); (2)求证:BC∥y轴; (3)若点B′恰好落在线段BC′上,求此时m的值.
如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片. (1)求证:四边形ADEF是正方形; (2)取线段AF的中点G,连接EG,如果BG=CD,试说明四边形GBCE是等腰梯形.
某商场将某种商品的售价从原来的每件40元,经两次调价后调至每件32.4元:(1)若该商场两次降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多售出10件,若该商品原来每月可售500件,那么两次调价后,每月可售出该商品多少件?
已知:关于x的方程 (1)当m取什么值时,原方程没有实数根; (2)对m选取一个你喜欢的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
已知,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影; (2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
画右边几何体的三种视图(注意符合三视图原则).