(年四川南充8分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.
如图所示,E是□ABCD的边BC延长线上的一点,连接AE,交边CD于点F.在不添加辅助线的情况下,图中相似的三角形有几对?请分别写出来,并说明判定的依据.
如图,△ADE∽△ABC,∠AED=∠C,分别找出△ADE的各边的对应边和各角的对应角,并写出对应边的比例式.
如图,在□ABCD中,对角线AC,BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点.(1)试说明四边形EFGH是平行四边形.(2)四边形EFGH与□ABCD相似吗?说明理由.
如图,在△ABC中,D,E分别为边AB,AC的中点.(1)求证:△ADE与△ABC相似;(2)求△ADE与△ABC的相似比.
如图,四边形ABCD与四边形A′B′C′D′相似,AB=18,A′B′=6,B′C′=8,C′D′=7.求∠A、∠D、BC、CD.