(年湖北天门学业12分)如图,已知二次函数的图象过点A(0,﹣3),B(),对称轴为直线,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.(1)求此二次函数的解析式;(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.
已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F. (1)求证:△ABE≌△FCE ; (2)若BC⊥AB,且BC=16,AB=17,求AF的长.
计算:
如图1,已知双曲线与直线交于A,B两点,点A的坐标为(3,1).试解答下列问题: ⑴求点B的坐标; ⑵当x满足什么范围时,; ⑶过原点O作另一条直线l,交双曲线于P,Q两点,点P在第一象限, 如图2所示. ①试判断四边形APBQ的形状,并加以说明; ② 若点P的横坐标为1,求四边形APBQ的面积;
为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元. (1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵? (2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.