(年山东德州12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F. (1)若抛物线过点A、B、C, 求此抛物线的解析式; (2)求△OAE与△ODC重叠的部分四边形ODFE的面积; (3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.
如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2). (1)求y关于x的函数关系式,并写出x的取值范围; (2)求△PBQ的面积的最大值.
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D. (1)求证:PD是⊙O的切线; (2)若∠CAB=120°,AB=6,求BC的值.
如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点, (1)求出这条抛物线; (2)求它与x轴的交点和抛物线顶点的坐标; (3)x取什么值时,抛物线在x轴上方? (4)x取什么值时,y的值随x的增大而减小?
在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上. (1)以O为原点建立直角坐标系,点B的坐标为(-3,1),直接写出点A的坐标; (2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求点B旋转到B1所经过的路线的长度.