(年山东德州12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
某商场将进货单价为18元的商品,按每件20元售出时,每天可销售100件,如果每件提高1元,日销售量就要减少10件,若使商场投资少,收益大,那么该商品的售出价格定为多少元时,才能使每天获得350元?
已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.
已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.
小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜,否则小芳胜.此游戏的规则对小明、小芳公平吗?试说明理由.
解方程: (1) (2)