(年辽宁丹东14分)如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.
某空调器销售商,今年四月份销出空调台,五月份销售空调比四月份的2倍多1台,六月份销售空调比前两个月的总和的4倍少15台.(1)用代数式表示该销售商今年第二季度共销售空调多少台?(2)当四月份销出空调为111台时,求第二季度销售的空调总数.
阅读:当、均为正数时,若,则有,反之也成立.活动:现已知,请你设计一个方案来确定的近似值(精确到小数点后两位).
观察下列每对数在数轴上的对应点之间的距离:4与,3与5,与,与3.并回答下列各题: (1)你能发现所得距离与这两个数的差的绝对值有什么关系吗? 答: . (2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为 . (3)结合数轴探求的最小值,并说明取得最小值时x的取值范围.
某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:
按这种方式排下去, (1)第5、6排各有多少个座位? (2)第n排有多少个座位? (3)根据(2)的代数式,判断第25排有多少个座位?
小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米): +4, -3, +10, -8, -5, +12, -10 问:(1)小虫是否回到原点O ? (2)小虫离开出发点O最远是多少厘米? (3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?