(年福建福州14分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙O的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.
如图,矩形OABC的顶点B点坐标为(3,2),点D是BC的中点.(1)将△ABD向左平移3个单位,则点D的对应点E的坐标为 ;(2)若点E在双曲线y=上,则k的值为 ,直线OE与双曲线的另一个交点F的坐标是 ;(3)若在y轴上有一动点P,当点P运动到何处时PB+PF的值最小?求出此时的P点坐标.
某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)试说明△ACB∽△DCE;(2)请判断EF与AB的位置关系并说明理由.
先化简(1-)÷,然后选取一个合适的整数作为x的值代入求值.
解不等式(组)或方程(1)解不等式; (2)解方程+=1.(3)解不等组