(年湖南湘潭10分)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC。(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.
已知:、是一元二次方程的两个实数根,且、满足不等式,求实数m的取值范围.
解方程: (1) (2)
在平面直角坐标系中,抛物线C1:y=ax2-1(1)若抛物线过点A(1,0),求抛物线C1的解析式;(2)将(1)中的抛物线C1平移,使其顶点在直线L1:y=x上,得到抛物线C2,若直线L1与抛物线C2交于点C、D,求线段CD的长;(3)将(1)中的抛物线C1绕点A旋转1800后得到抛物线C3,直线y=kx-2k+4与抛物线C3只有唯一交点,求符合条件的直线l的解析式。
如图,已知△ABC是等腰三角形,顶角∠BAC=(<600),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE、BE、DF(1)求证:BE=CD(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明。