某地有两家通讯公司,移动通讯收费标准如下:第一家规定不收月租费,每分钟收费是0.6元;第二家规定要收月租费,每月收50元,另外每分钟收费0.4元[(1)某用户每月打电话的时间为x分钟,请你写出这两种收费方式下应该支付的费用;(2)某用户每月打电话的时间为200分钟,你认为应该采用哪一家通讯公司合算;(3)你认为每月打电话时间超过多少分钟,第二家通讯公司比较合算
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D 为AC上一点,∠AOD=∠C. (1)求证:OD⊥AC; (2)若AE=8,cosA=,求OD的长.
已知关于x的一元二次方程,其中a、b、c分别为△ABC三边的长. (1)如果是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.
解方程 (1) (2)
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线与轴交于点M、与轴交于点N,抛物线的图象经过点C、M、N.解答下列问题: (1)分别求出直线和抛物线所表示的函数解析式; (2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由. (3)将直线MN向上平移,使它与抛物线只有一个交点,求此时直线的解析式. (4)点P是x轴上方的抛物线上的一动点,连接P M,P N ,设所得△PMN的面积为S. ①求S的取值范围; ②若△PMN的面积S为整数,则这样的△PBC共有个.
如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5. (1)求点D的坐标和BC的长; (2)求点C的坐标和⊙M的半径; (3)求证:CD是⊙M的切线.