(年贵州六盘水14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据,)
如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA。(1)试求∠DAE的度数。(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由。
如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米。(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向也滑动了4米吗?
如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:
已知:如图,在等腰中,,,, 垂足分别为点,,连接.试问四边形是等腰梯形吗?为什么?
如图,在四边形ABCD中,∠ABC=∠ADC=90,M、N分别是AC、BD的中点,猜一猜MN与BD的位置关系,并说明结论。