如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,请直接写出t的值.
如图,在菱形ABCD中,点E,F分别为边BC,CD的中点,连接AE,AF.求证:△ABE≌△ADF.
(1)计算:;(2)化简:.
如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线过A.B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB? 若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S的最大(小)值.
如图,已知直线PA交⊙O于A.B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CDPA⊥,垂足为D. (1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.(1)求点的坐标;(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.