如图,在锐角三角形ABC中,AD⊥BC于D,E、F、G分别是AC.AB.BC的中点。求证:FG=DE。
若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,中,设,,,各边上的高分别记为,,,各边上的内接正方形的边长分别记为,,
(1)模拟探究:如图,正方形为的边上的内接正方形,求证: 1 a + 1 h a = 1 x a ;
(2)特殊应用:若,,求 1 b + 1 c 的值;
(3)拓展延伸:若为锐角三角形,,请判断与的大小,并说明理由.
如图,反比例函数 y = k x ( x > 0 ) 的图象与直线交于点,,其两边分别与两坐标轴的正半轴交于点,,四边形的面积为6.
(1)求的值;
(2)点在反比例函数 y = k x ( x > 0 ) 的图象上,若点的横坐标为3,,其两边分别与轴的正半轴,直线交于点,,问是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
如图,在中,,对角线,相交于点,以为直径的分别交,于点,,连接并延长交于点.
(1)求证:是的切线;
(2)求证:.
甲车从地驶往地,同时乙车从地驶往地,两车相向而行,匀速行驶,甲车距地的距离与行驶时间之间的函数关系如图所示,乙车的速度是
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为,并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求的值.
在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.