在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知点在抛物线:上.(1)若的三个顶点都在抛物线上,记三边,,所在直线的斜率分别为,,,求的值;(2)若四边形的四个顶点都在抛物线上,记四边,,,所在直线的斜率分别为,,,,求的值.
已知,,为正实数,若,求证:.
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),若直线与圆相切,求实数的值.
已知曲线:,若矩阵对应的变换将曲线变为曲线,求曲线的方程.
如图,,是半径为的圆的两条弦,它们相交于的中点,若, ,求的长.