已知曲线的极坐标方程是,直线的参数方程是(为参数).(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)设直线与轴的交点是,是曲线上一动点,求的最大值.
设的导数满足,其中.求曲线在点处的切线方程;设,求函数的极值.
已知向量,,且求的值;求的值.
已知函数. (Ⅰ)若在上的最大值为,求实数的值; (Ⅱ)若对任意,都有恒成立,求实数的取值范围; (Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.
设是椭圆的左焦点,直线方程为,直线与轴交于点,、分别为椭圆的左右顶点,已知,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)过点且斜率为的直线交椭圆于、两点,求三角形面积.
已知数列中,当时,总有成立,且. (Ⅰ)证明:数列是等差数列,并求数列的通项公式; (Ⅱ)求数列的前项和.