选修4-1:几何证明选讲如图,是的一条切线,切点为,直线,,都是的割线,已知.(1)求证:;(2)若,.求的值.
(本小题满分12分)已知函数是定义在上的增函数,对于任意的,都有,且满足.(1)求的值; (2)求满足的的取值范围.
(本小题满分12分)设集合,(1)若,求;(2)若,求实数的取值范围.
已知数列是等差数列,其前n项和为Sn,若,.(1)求;(2)若数列{Mn}满足条件: ,当时,-,其中数列单调递增,且,.①试找出一组,,使得;②证明:对于数列,一定存在数列,使得数列中的各数均为一个整数的平方.
如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.(1)若直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,,求证:;(3)试问是否为定值?若是,求出该值;若不是,说明理由.
已知函数(其中是自然对数的底数),,.(1)记函数,且,求的单调增区间;(2)若对任意,,均有成立,求实数的取值范围.