已知函数,其中常数.(Ⅰ)当时,求函数的极值点;(Ⅱ)证明:对任意恒成立;(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.
(本小题满分12分)如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:BD⊥FG;(2)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
(本小题满分12分)在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
(本小题满分12分)在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.
(本小题满分10分)选修4-5;不等式选讲若且(1)求的最小值;(2)是否存在,使得?并说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.