(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆C:,直线(t为参数).(Ⅰ)写出椭圆C的参数方程及直线的普通方程;(Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线的距离相等,求点P的坐标.
已知函数.(1)若不等式的解集为,求实数a的值;(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.
已知某圆的极坐标方程是,求(1)求圆的普通方程和一个参数方程;(2)圆上所有点中的最大值和最小值.
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。(1)求证: ;(2)若AC=3,求的值。
函数 .(Ⅰ) 当时,求证:;(Ⅱ) 在区间上恒成立,求实数的范围。(Ⅲ) 当时,求证:).
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数的取值范围.