(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上.(Ⅰ)求证:DE//平面ABC;(Ⅱ)求二面角的余弦值.
某化工厂引进一条先进的生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨, (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本; (2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD. (1)求证:BF∥平面ACE; (2)求证:平面EAC⊥平面BDEF (3)求几何体ABCDEF的体积.
如图所示茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示. (1)若甲、乙两个小组的数学平均成绩相同,求a的值; (2)求乙组平均成绩超过甲组平均成绩的概率; (3)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.
已知函数f(x)=4sinxcos(x-)-1 (1)求函数f(x)的最小正周期; (2)当x∈[-π,]时,求函数f(x)的取值范围.
已知命题p:方程有两个不等的负根;命题q:方程无实根.若为真,为假,试求实数m的取值范围.