已知幂函数,且在上单调递增.(1)求实数的值,并写出相应的函数的解析式;(2)若在区间上不单调,求实数的取值范围;(3)试判断是否存在正数,使函数在区间上的值域为若存在,求出的值;若不存在,请说明理由.
已知不等式的解集为.(Ⅰ )求的值;(Ⅱ )若,求的取值范围.
在极坐标系中,圆的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系.(Ⅰ)求圆的直角坐标方程;(Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
已知线性变换:对应的矩阵为,向量β.(Ⅰ)求矩阵的逆矩阵;(Ⅱ)若向量α在作用下变为向量β,求向量α.
已知函数.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)当时,讨论函数在区间上的单调性;(Ⅲ)证明不等式对任意成立.
已知,曲线上任意一点分别与点、连线的斜率的乘积为.(Ⅰ)求曲线的方程;(Ⅱ)设直线与轴、轴分别交于、两点,若曲线与直线没有公共点,求证:.