(本小题满分14分)已知函数,,.(Ⅰ)若函数的图象在原点处的切线与函数的图象相切,求实数的值;(Ⅱ)若在上单调递减,求实数的取值范围;(Ⅲ)若对于,总存在,且满,其中为自然对数的底数,求实数的取值范围.
已知函数,点. (1)若,函数在上既能取到极大值,又能取到极小值,求的取值范围; (2)当时,对任意的恒成立,求的取值范围; (3)若,函数在和处取得极值,且,是坐标原点,证明:直线与直线不可能垂直.
如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形. (1)求椭圆C的方程; (2)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在请求出该定直线,若不在请说明理由.
如图,底面为正三角形,面, 面,,设为的中点. (1)求证:平面; (2)求直线与平面所成角的正弦值.
已知等差数列的前n项和为,且.数列的前n项和为,且,. (1)求数列,的通项公式; (2)设, 求数列的前项和.
在中,内角的对边分别为,且,. (1)求角的大小;(2)设边的中点为,,求的面积.