在平面直角坐标系中,已知过点的椭圆:的右焦点为,过焦点且与轴不重合的直线与椭圆交于,两点,点关于坐标原点的对称点为,直线,分别交椭圆的右准线于,两点.(1)求椭圆的标准方程;(2)若点的坐标为,试求直线的方程;(3)记,两点的纵坐标分别为,,试问是否为定值?若是,请求出该定值;若不是,请说明理由.
已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.(1)求k的值;并求的单调区间;(2)设,其中为的导函数.证明:对任意.
设函数,,其中为实数,若在上是单调减函数,且在上有最小值,求的取值范围.
已知数列{}满足+=2n+1 ()(1)求出,,的值;(2)由(1)猜想出数列{}的通项公式,并用数学归纳法证明.
现有5名男司机,4名女司机,需选派5人运货到吴忠.(1)如果派3名男司机、2名女司机,共多少种不同的选派方法?(2)至少有两名男司机,共多少种不同的选派方法?
复数,.(1)为何值时,是纯虚数?取什么值时,在复平面内对应的点位于第四象限?(2)若()的展开式第3项系数为40,求此时的值及对应的复数的值.