(本题满分12分)在△ABC中,∠A、∠B、∠C所对的边长为a、b、c,已知(Ⅰ) 求的值;(Ⅱ) 求∠A的取值范围。
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.
(本小题满分12分)如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.(Ⅰ)求证:AM∥面SCD;(Ⅱ)求面SCD与面SAB所成二面角的余弦值;(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,
(本小题满分12分)已知数列{ an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列的前n项和T.
(本小题满分12分)某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.参考数据:若.则=0.6826,="0.9544," =0.9974.
(本小题满分12分)已知函数f(x)=" cos(" 2x+)+sin2x.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2·=, 求△ABC的面积S.