(本小题满分14分)已知椭圆()的右焦点,点在椭圆上.(1)求椭圆的标准方程;(2)直线过点,且与椭圆交于,两点,过原点作直线的垂线,垂足为,如果的面积为(为实数),求的值.
如图,在直三棱柱中,,,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
盒中装有个零件,其中个是使用过的,另外个未经使用.(Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.
已知函数,.(Ⅰ)求方程=0的根; (Ⅱ)求的最大值和最小值.
已知函数 .(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为.(I)求椭圆的方程。(II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。