(本小题满分14分)设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于,两点,线段的长是,的中点到轴的距离是.(1)求抛物线的标准方程;(2)在抛物线上是否存在不与原点重合的点,使得过点的直线交抛物线于另一点,满足,且直线与抛物线在点处的切线垂直?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分14分)已知椭圆:的上顶点为,两个焦点为、,为正三角形且周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知圆:,若直线与椭圆只有一个公共点,且直线与圆相切于点;求的最大值.
(本小题满分13分)已知函数,其中为常数,且.(Ⅰ)若曲线在点(1,)处的切线与直线垂直,求的值;(Ⅱ)若函数在区间[1,2]上的最小值的表达式.
(本小题满分13分)从含有两件正品和一件次品的3件产品中,每次任取1件(Ⅰ)每次取出后不放回,连续取两次,求取出的产品中恰有一件次品的概率;(Ⅱ)每次取出后放回,连续取两次,求取出的产品中恰有一件次品的概率.
(本小题满分14分) 如图,在四棱锥中,底面为矩形,平面平面,,,为的中点,求证:(Ⅰ)平面;(Ⅱ)平面平面;(Ⅲ)求四棱锥的体积.
(本小题满分13分)已知函数,(Ⅰ)求函数的最小正周期;(Ⅱ)记的内角A,B,C的对边长分别为,若,求的值.