(本小题满分13分)如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.(1)若直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,,求证:;(3)试问是否为定值?若是,求出该值;若不是,说明理由.
已知分别为△ABC三个内角A,B,C的对边,(1)求A(2)若,△ABC的面积为,求b,c
已知:命题p:曲线与轴相交于不同的两点;命题表示焦点在轴上的椭圆.若“p且q” 是假命题,“”是假命题,求取值范围.
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.(Ⅰ)求点M的轨迹方程;(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;(Ⅲ)过的直线与轨迹E交于P、Q两点,求面积的最大值.
(本小题满分12分)数列记(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列的通项公式及数列的前n项和
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。