设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.(Ⅰ)求椭圆的方程;(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
(本小题满分12分)已知数列满足,且,为的前项和.(Ⅰ)求证:数列是等比数列,并求的通项公式;(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
.(本小题满分12分)某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:(Ⅰ)从该单位任选两名职工,用表示这两人休年假次数之和,记“函数在区间,上有且只有一个零点”为事件,求事件发生的概率;(Ⅱ)从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量 的分布列及数学期望.
(本小题满分12分)如图,为矩形,为梯形,平面平面,,,.(Ⅰ)若为中点,求证:平面;(Ⅱ)求平面与所成锐二面角的余弦值.
(本小题满分12分)已知向量,,向量,,函数.(Ⅰ)求的最小正周期;(Ⅱ)已知,,分别为内角,,的对边,为锐角,,,且恰是在,上的最大值,求,和的面积.
((本小题满分14分)已知圆,点,点在圆运动,垂直平分线交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率;(Ⅲ)过点且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.