选修4-5:不等式证明设函数(1)若的解集为R,求实数a的取值范围;(2)若的解集为,且,求证:.
已知函数。(1)求的定义域及最小正周期;(2)求的单调递增区间。
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).
已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;
已知数列中,且点在直线上。(1)求数列的通项公式;(2)求函数的最小值;(3)设表示数列的前项和。试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
如图,在平面直角坐标系中,点为椭圆的右顶点, 点,点在椭圆上, .(1)求直线的方程;(2)求直线被过三点的圆截得的弦长;