(本小题满分12分) 已知函数为常数.(1)当时,求的单调区间;(2)当时,若在区间上的最大值为,求的值;(3)当时,试推断方程=是否有实数解.
已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.
电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?
已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.
已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁RN);(2)若M∪N=M,求实数a的取值范围.
(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.