已知平行四边形,,,,为的中点,把三角形沿折起至位置,使得,是线段的中点.(1)求证:平面;(2)求证:平面平面;(3)求四棱锥的体积.
如图所示,在边长为的正方形中,点在线段上,且,,作,分别交,于点,,作,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱. (1)求证:平面; (2)求四棱锥的体积; (3)求平面与平面所成角的余弦值.
已知数列,其中,数列的前项和,数列满足. (1)求数列的通项公式; (2)是否存在自然数,使得对于任意,,有恒成立?若存在,求出的最小值;
已知分别为的三边所对的角,向量,,且 (1)求角的大小; (2)若成等差数列,且,求边的长
(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。 (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围。
(本小题共13分)已知数列的前n项和为,且。 (1)证明:数列是等比数列; (2)若数列满足,求数列的通项公式。