已知平行四边形,,,,为的中点,把三角形沿折起至位置,使得,是线段的中点.(1)求证:平面;(2)求证:平面平面;(3)求四棱锥的体积.
已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,C=,求△ABC的面积.
已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为.(1)求椭圆的标准方程;(2)点为椭圆上除长轴端点外的任一点,直线,与椭圆的右准线分别交于点,.①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;②已知常数,求的取值范围.
已知函数,,.(1)若,设函数,求的极大值;(2)设函数,讨论的单调性.
已知圆.(1)若直线过点,且与圆相切,求直线的方程;(2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆 的方程.
已知抛物线的焦点为双曲线的一个焦点,且两条曲线都经过点.(1)求这两条曲线的标准方程;(2)已知点在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点 的坐标.