(本小题满分14分)已知a>0,函数 . (1)讨论函数f(x)的单调性; (2)当函数f(x)存在极值时,设所有极值之和为g(a),求g(a)的取值范围.
(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线交椭圆于,两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.
(本小题共13分)已知函数,其中.(Ⅰ)求证:函数在区间上是增函数;(Ⅱ)若函数在处取得最大值,求.
(本小题共14分)如图,在四棱锥中,底面为菱形,,为的中点,.(Ⅰ)求证:平面;(Ⅱ)点在线段上,,试确定的值,使平面;(Ⅲ)若平面,平面平面,求二面角的大小.
(本小题共13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且, .(Ⅰ)求与;(Ⅱ)证明:≤.
(本小题共13分)已知△中,角,,的对边分别为,,,且,.(Ⅰ)若,求; (Ⅱ)若,求△的面积.