(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
设a=(cos,sin),b=(cos,sin),且a与b具有关系|ka+b|=|a-kb|(k>0). (1)用k表示a·b; (2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°). (1)求a·b; (2)若向量b与向量m共线,u=a+m,求u的模的最小值.
已知a=(cos,sin),b=(cos,sin)(0<<<). (1)求证:a+b与a-b互相垂直; (2)若ka+b与a-kb的模相等,求-.(其中k为非零实数)
A(2,3),B(5,4),C(7,10),=+.当为何值时, (1)点P在第一、三象限的角平分线上; (2)点P到两坐标轴的距离相等?
在ABCD中,A(1,1),=(6,0),点M是线段AB的中点,线段CM与BD交于点P. (1)若=(3,5),求点C的坐标; (2)当||=||时,求点P的轨迹.