已知直线,一个圆的圆心在轴正半轴上,且该圆与直线和轴均相切.(1)求该圆的方程;(2)直线与圆交于两点,且是等边三角形,求的值.
某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线是以点为圆心的圆的一部分,其中(,单位:米);曲线是抛物线的一部分;,且恰好等于圆的半径. 假定拟建体育馆的高米. (1)若要求米,米,求与的值; (2)若要求体育馆侧面的最大宽度不超过米,求的取值范围; (3)若,求的最大值. (参考公式:若,则)
如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。 (1)求椭圆的离心率; (2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
如图,在正方体中,分别为的中点. (1)求证:平面; (2)求证:平面平面.
在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记. (1)求函数的值域; (2)设的角所对的边分别为,若,且,,求.
已知数列满足,且不含数字,顺序为按从小到大排列,求证: