(本小题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c,若. (1)求的值; (2)若,且,求的值.
已知函数.(1)求的最小正周期和图象的对称轴方程;(2)求在区间上的最大值和最小值。
设函数为实数,且,(Ⅰ)若,曲线通过点,且在点处的切线垂直于轴,求的表达式;(Ⅱ)在(Ⅰ)在条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,,,且为偶函数,证明
已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆的长轴上,点是椭圆上任意一点. 当最小时,点恰好落在椭圆的右顶点,求实数的取值范围.
设数列的前项和为,已知 (Ⅰ)求证:数列为等差数列,并写出关于的表达式; (Ⅱ)若数列前项和为,问满足的最小正整数是多少? .
已知函数在处有极值.(Ⅰ)求,的值;(Ⅱ)判断函数的单调性并求出单调区间.