(本小题满分14分)已知数列{}满足:,();数列{}满足:().(1)求数列{}的通项公式及其前n项和;(2)证明:数列{}中的任意三项不可能成等差数列.
已知函数. (1)求函数的最小正周期; (2)当时,求函数的取值范围.
在中,为锐角,角所对的边分别为,且 (I)求的值; (II)若,求的值。
在数列中,已知。 (1)求数列的通项公式; (2)若(为非零常数),问是否存在整数,使得对任意的都有?若存在,求出的值;若不存在,请说明理由。
数列满足,(). (Ⅰ)证明:数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)设,求数列的前项和.
数列中,,(是常数,),且成公比不为的等比数列。 (I)求的值; (II)求的通项公式。 (III)由数列中的第1、3、9、27、……项构成一个新的数列{b},求的值。