(本小题满分14分)已知数列{}满足:,();数列{}满足:().(1)求数列{}的通项公式及其前n项和;(2)证明:数列{}中的任意三项不可能成等差数列.
已知点(1,2)是函数的图象上一点,数列的前项和是.(1)求数列的通项公式;(2)若,求数列的前项和
)已知函数满足对一切都有,且,当时有.(1)求的值; (2)判断并证明函数在上的单调性;(3)解不等式:
已知圆O:和定点,由圆O外一点向圆O引切线,切点为,且满足.(1)求实数间满足的等量关系;(2)求线段长的最小值;(3)若以为圆心所作的圆P与圆0有公共点,试求半径取最小值时圆P的方程.
函数满足,且方程的两个根满足.(1)求解析式;(2)若,函数在上的最小值为,求的值.
二次函数,圆为的外接圆,斜率为1的直线与圆相交于不同两点,的中点为,为坐标原点,且.(1)求圆的方程;(2)求直线的方程.