先化简,再求值:(-)÷,其中x=.
东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于 25 % ,那么每套悠悠球的售价至少是多少元?
两栋居民楼之间的距离 CD = 30 米,楼 AC 和 BD 均为10层,每层楼高3米.
(1)上午某时刻,太阳光线 GB 与水平面的夹角为 30 ° ,此刻 B 楼的影子落在 A 楼的第几层?
(2)当太阳光线与水平面的夹角为多少度时, B 楼的影子刚好落在 A 楼的底部?
某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
如图,直线 y = x − 3 与坐标轴交于 A 、 B 两点,抛物线 y = 1 4 x 2 + bx + c 经过点 B ,与直线 y = x − 3 交于点 E ( 8 , 5 ) ,且与 x 轴交于 C , D 两点.
(1)求抛物线的解析式;
(2)抛物线上有一点 M ,当 ∠ MBE = 75 ° 时,求点 M 的横坐标;
(3)点 P 在抛物线上,在坐标平面内是否存在点 Q ,使得以点 P , Q , B , C 为顶点的四边形是矩形?若存在,请直接写出点 Q 的坐标;若不存在,请说明理由.
在 ΔABC 和 ΔADE 中, BA = BC , DA = DE .且 ∠ ABC = ∠ ADE = α ,点 E 在 ΔABC 的内部,连接 EC , EB 和 BD ,并且 ∠ ACE + ∠ ABE = 90 ° .
(1)如图①,当 α = 60 ° 时,线段 BD 与 CE 的数量关系为 ,线段 EA , EB , EC 的数量关系为 ;
(2)如图②,当 α = 90 ° 时,请写出线段 EA , EB , EC 的数量关系,并说明理由;
(3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC = 2 5 ,请直接写出 ΔBDE 的面积.