(本题6分)已知方程组有两组实数解,,且,,设,(1)求的取值范围;(2)用含的代数式表示;(3)是否存在这样的的值,使的值为—2 ?如果存在,求出这样的的值;若不存在,说明理由.
如图,在矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F. (1)求证:△BOE≌△DOF; (2)当EF与AC满足____▲_____关系时,以A、E、C、F为顶点的四边形是菱形.
某市第二届风筝节——“以鹞会友”活动于4月9日在西区公园举行.如图,广场上空有一风筝A,在地面上的B,C两点与点D在一条直线上.在点B和C分别测得风筝A的仰角∠ABD为45°,∠ACD为60°,又测得BC=20m.求风筝A离地面的高度. (≈1.41,≈1.73,,结果精确到0.1米)
如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作轴的垂线交直线AB与点C,作PD⊥AB于点D (1)求及的值 (2)设点P的横坐标为 ①用含的代数式表示线段PD的长,并求出线段PD长的最大值; ②连接PB,线段PC把分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整. 原题:如图1,在中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若,求的值。 (1)尝试探究 在图1中,过点E作交BG于点H,则AB和EH的数量关系是,CG和EH的数量关系是,的值是 (2)类比延伸 如图2,在原题的条件下,若则的值是(用含的代数式表示),试写出解答过程。 (3)拓展迁移 如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若,则的值是(用含的代数式表示).
某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。 (1)求购买一套A型课桌凳和一套B型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?