(本题6分)已知方程组有两组实数解,,且,,设,(1)求的取值范围;(2)用含的代数式表示;(3)是否存在这样的的值,使的值为—2 ?如果存在,求出这样的的值;若不存在,说明理由.
如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合). (1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= . (2)若四边形OBCD为平行四边形. ①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数; ②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.
目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A、E、C、F在同一直线上,且∠CAB=75°.(1)求车架中AE的长;(2)求车座点F到车架AB的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
如图,一次函数y=kx+b的图象经过点A(6,0),点B(2,2),且与y轴相交于点C.请根据以上信息(不再添加其他条件),提出一个问题并尝试解答.你提出的问题是 ;并请写出你的解答过程.
(1)计算:﹣(π﹣3.14)0+2﹣1;(2)化简:(a+3)2﹣a(a+3).
(1)如图1,两个等边三角形ABC和A1B1C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与 A1B1,BC与B1C1,AC与A1C1之间的距离相等,直线MQ分别交三角形相邻两边于点M、N、P、Q,与AB所成夹角为∠α,①当∠α=30°时,求的值;②当30°<∠α<90°,请用含∠α的式子表示;(2)如图2,两个正方形ABCD和A1B1C1D1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,CD∥C1D1,AD∥A1D1,可知AB与A1B1,BC与B1C1,CD与C1D1,AD与A1D1之间的距离相等,直线MQ分别交正方形相邻两边于点M、N、P、Q,与AB所成夹角为∠α,①当∠α=30°时,求的值;②当0°<∠α<90°,请用含∠α的式子表示;(3)根据(1)、(2)的研究,如果正n边形(n>4)的位置关系也满足同样的条件(如图3),正n边形相邻两边被直线MQ截得的两条线段为MN,PQ,请用含m,∠α(0°<∠α<90°)的式子表示.