一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是 ;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.
求下式中的x:(1);(2).
如图所示,在△ABC中,AC=8,BC=6,在△ABC中,DE为AB边上的高,DE=12,△ABE的面积为60,△ABC是否为直角三角形?说明理由.
如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12.(1)AD⊥BD吗?为什么?(2)求四边形ABCD的面积.
张老师在一次“探究性学习”课中,设计了如下数表:
(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=_______,b= _______,c=_______;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.
下列各数中,哪些是有理数?哪些是无理数?.