求不等式组的整数解.
如图1,已知在平行四边形ABCD中,AB=10,BC=16,sinB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G. (1)当圆C经过点A时,求CP的长; (2)联结AP,当AP∥CG时,求弦EF的长; (3)当△AGE是等腰三角形时,求CG的长.
如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD. (1)求证:DF是⊙O的切线; (2)求FG的长; (3)求tan∠FGD的值.
受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,某服装厂每件衣服原材料的成本(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本(元)与月份x的函数关系式为=x+74(8≤x≤12,且x为整数). (1) 请观察表格中的数据,用学过的函数相关知识求与x的函数关系式. (2) 若去年该衣服每件的出厂价为105元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量(万件)与月份x满足关系式=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量(万件)与月份x满足关系式=-0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上, tan∠BPD=.延长BD交轴于点C,过点D作DA⊥轴,垂足为A,PD与轴交于点E,OA=8,OB=6. (1)求点C的坐标; (2)若点D在反比例函数y =(k>0)的图象上,求反比例函数的解析式.
某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西47°方向,距A船26海里的海域,C船位于A船的北偏东58°方向,同时又位于B船的北偏东88°方向. (1)求∠ABC的度数; (2)A船以每小时40海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时). (参考数据:≈1.414,≈1.732)