(文)如图,已知四边形ABCD为矩形,平面ABE,AE=EB=BC=2,F为CE上的点,且平面ACE.(1)求证:AE//平面BDF;(2)求三棱锥D-ACE的体积.
(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.(1)求证:平面平面;(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
(本题12分)已知数列的前项和为,且,其中(1)求数列的通项公式;(2)若,数列的前项和为,求证:
【改编】(本小题满分12分)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的单调性.
设函数的定义域是,其中常数.(1)若,求的过原点的切线方程.(2)当时,求最大实数,使不等式对恒成立.(3)证明当时,对任何,有.
(本小题满分13分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.