如图,已知中,,,分别是上的动点, 且. (1) 求证:不论为何值,总有平面; (2) 当为何值时,平面?
已知函数,设方程有两个实数根(1)若果,设函数的对称轴为,求证:(2)如果的两个实数根相差2,求实数b的取值范围。
如图,已知过点的抛物线与过点的动直线相交于、两点.(Ⅰ)求直线与直线的斜率的乘积;(Ⅱ)若,求证:△的周长为定值.
如图,在四棱锥中,平面PAD⊥平面ABCD, ,,E是BD的中点.(Ⅰ)求证:EC//平面APD;(Ⅱ)求BP与平面ABCD所成角的正切值;(Ⅲ)求二面角的正弦值.
已知等差数列数列的前项和为,等比数列的各项均为正数,公比是,且满足:.(Ⅰ)求与;(Ⅱ)设,若满足:对任意的恒成立,求的取值范围.
中,三个内角A、B、C所对的边分别为、、,若,.(Ⅰ)求角的大小;(Ⅱ)已知的面积为,求函数的最大值.