甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
若三人各射击一次,恰有k名选手击中目标的概率记为.(1)求X的分布列;(2)若击中目标人数的均值是2,求P的值.
设数列的前项和为,且满足.(Ⅰ)求证:数列为等比数列;(Ⅱ)求通项公式;(Ⅲ)若数列是首项为1,公差为2的等差数列,求数列的前项和为.
在中,角,,所对的边长分别是,,. 满足.(Ⅰ)求角的大小;(Ⅱ)求的最大值.
申请某种许可证,根据规定需要通过统一考试才能获得,且考试最多允许考四次. 设表示一位申请者经过考试的次数,据统计数据分析知的概率分布如下:
(Ⅰ)求一位申请者所经过的平均考试次数;(Ⅱ)已知每名申请者参加次考试需缴纳费用(单位:元),求两位申请者所需费用的和小于500元的概率;(Ⅲ)在(Ⅱ)的条件下, 4位申请者中获得许可证的考试费用低于300元的人数记为,求的分布列.
某班同学寒假期间在三个小区进行了一次有关“年夜饭在哪吃”的调查,若年夜饭在家吃的称为“传统族”,否则称为“前卫族”,这两类家庭总数占各自小区家庭总数的比例如下:
(Ⅰ)从A , B , C三个小区中各选一个家庭,求恰好有2个家庭是“传统族”的概率(用比例作为相应的概率);(Ⅱ)在C小区按上述比例选出的20户家庭中,任意抽取3户家庭,其中“前卫族”家庭的数量记为X,求X的分布列和期望.
已知函数(其中).(Ⅰ)求的单调区间;(Ⅱ)求在上的最大值与最小值.