如图,平行四边形 ABCD对角线交于点O,点E是线段BO上的动点(与点B、O不重合),连接CE,过A点作AF∥CE交BD于点F,连接AE与CF.(1)求证:四边形AECF是平行四边形;(2)当BA=BC=2,∠ABC=60°时,平行四边形 AECF能否成为正方形?若能,求出BE的长;若不能,请说明理由.
已知正方形A BCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G。 (1)求证:△BDG∽△DEG。 (2)若EG•BG=4,求BE的长。
如图,点A(m,6),B(n,1)在反比例函数图像上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5. (1)求m、n的值并写出反比例函数的表达式; (2)连接AB,在线段DC上是否存在一点E,使得△ABE的面积等于5,若存在,求出E点坐标;若不存在,请说明理由。
如图,菱形ABCD的对角线AC与BD交于点O,已知AB=13cm,AC=24cm。 (1)求菱形ABCD的面积; (2)过点D作DE⊥BC于E,求DE的长。
关于x的一元二次方程有两个实数根和。 (1)求实数m的取值范围。 (2)当时,求m的值。
图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图: (1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个; (2)在图②中,以格点为顶点,画一个正方形,使其内部已 标注的格点只有3个,且边长为无理数.